Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 102, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013238

RESUMO

The systematic design of functional peptides has technological and therapeutic applications. However, there is a need for pattern-based search engines that help locate desired functional motifs in primary sequences regardless of their evolutionary conservation. Existing databases such as The Protein Secondary Structure database (PSS) no longer serves the community, while the Dictionary of Protein Secondary Structure (DSSP) annotates the secondary structures when tertiary structures of proteins are provided. Here, we extract 1.7 million helices from the PDB and compile them into a database (Therapeutic Peptide Design database; TP-DB) that allows queries of compounded patterns to facilitate the identification of sequence motifs of helical structures. We show how TP-DB helps us identify a known purification-tag-specific antibody that can be repurposed into a diagnostic kit for Helicobacter pylori. We also show how the database can be used to design a new antimicrobial peptide that shows better Candida albicans clearance and lower hemolysis than its template homologs. Finally, we demonstrate how TP-DB can suggest point mutations in helical peptide blockers to prevent a targeted tumorigenic protein-protein interaction. TP-DB is made available at http://dyn.life.nthu.edu.tw/design/ .


Assuntos
Aminoácidos/química , Peptídeos Antimicrobianos/química , Antineoplásicos/química , Software , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Bases de Dados de Proteínas , Desenho de Fármacos/métodos , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica em alfa-Hélice , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Relação Estrutura-Atividade
2.
Sci Rep ; 9(1): 17096, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745103

RESUMO

A strategy in the discovery of anti-tuberculosis (anti-TB) drug involves targeting the enzymes involved in the biosynthesis of Mycobacterium tuberculosis' (Mtb) cell wall. One of these enzymes is Galactofuranosyltransferase 2 (GlfT2) that catalyzes the elongation of the galactan chain of Mtb cell wall. Studies targeting GlfT2 have so far produced compounds showing minimal inhibitory activity. With the current challenge of designing potential GlfT2 inhibitors with high inhibition activity, computational methods such as molecular docking, receptor-ligand mapping, molecular dynamics, and Three-Dimensional-Quantitative Structure-Activity Relationship (3D-QSAR) were utilized to deduce the interactions of the reported compounds with the target enzyme and enabling the design of more potent GlfT2 inhibitors. Molecular docking studies showed that the synthesized compounds have binding energy values between -3.00 to -6.00 kcal mol-1. Two compounds, #27 and #31, have registered binding energy values of -8.32 ± 0.01, and -8.08 ± 0.01 kcal mol-1, respectively. These compounds were synthesized as UDP-Galactopyranose mutase (UGM) inhibitors and could possibly inhibit GlfT2. Interestingly, the analogs of the known disaccharide substrate, compounds #1-4, have binding energy range of -10.00 to -19.00 kcal mol-1. The synthesized and newly designed compounds were subjected to 3D-QSAR to further design compounds with effective interaction within the active site. Results showed improved binding energy from -6.00 to -8.00 kcal mol-1. A significant increase on the binding affinity was observed when modifying the aglycon part instead of the sugar moiety. Furthermore, these top hit compounds were subjected to in silico ADMETox evaluation. Compounds #31, #70, #71, #72, and #73 were found to pass the ADME evaluation and throughout the screening, only compound #31 passed the predicted toxicity evaluation. This work could pave the way in the design and synthesis of GlfT2 inhibitors through computer-aided drug design and can be used as an initial approach in identifying potential novel GlfT2 inhibitors with promising activity and low toxicity.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Galactosiltransferases/antagonistas & inibidores , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Preparações Farmacêuticas/química , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Inibidores Enzimáticos/química , Galactosiltransferases/metabolismo , Humanos , Preparações Farmacêuticas/metabolismo , Testes de Toxicidade
3.
J Mol Graph Model ; 89: 250-260, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30933883

RESUMO

Drawbacks of industrially-used fructosyltransferases (FTs) such as low optimum temperature and low fructooligosaccharides (FOS) yield necessitates the search for engineered FTs that are highly thermostable and active. With the availability of the first plant FT crystal structure from Pachysandra terminalis (PDB ID: 3UGH), computer-aided protein engineering of plant FT is now feasible. To obtain insights on the effect of specific mutations i.e. disulfide bridge introduction, wild-type and mutant FTs were subjected to a 15 µs Martini Coarse-grained Molecular Dynamics (CGMD) simulations at 303 K and 334 K. We report here the five mutants, M31C-Q49C, L144C-S193C, P34C-W300C, S219C-L226C and V470C-S498C with enhanced thermostabilities and/or activities relative to the wild type. Interestingly, M31C-Q49C, which is located within the catalytic-carrying blade of the catalytic domain, has an activity enhancement at both temperatures. At 334 K, three mutations, L144C-S193C, P34C-W300C and V470C-S498C, achieved thermostability relative to the wild type. Intriguingly, both activity and stability enhancement exhibited only at 334 K can be achieved provided that the mutation is located either on the catalytic-carrying residue blade of the catalytic domain or on the non-catalytic domain. Our results suggest that V470C-S498C and L144C-S193C are promising mutants and that domain-specific approach may be exploited to customize enzyme properties.


Assuntos
Dissulfetos/química , Hexosiltransferases/química , Modelos Moleculares , Pachysandra/enzimologia , Termodinâmica , Sítios de Ligação , Estabilidade Enzimática , Hexosiltransferases/genética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...